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Abstract. We have studied the atomic density of a cloud confined in an isotropic harmonic trap at the
vicinity of the Bose-Einstein transition temperature. We show that, for a non-interacting gas and near this
temperature, the ground-state density has the same order of magnitude as the excited states density at the
centre of the trap. This holds in a range of temperatures where the ground-state population is negligible
compared to the total atom number. We compare the exact calculations, available in a harmonic trap, to
semi-classical approximations. We show that these latter should include the ground-state contribution to
be accurate.

PACS. 03.75.Hh Static properties of condensates; thermodynamical, statistical, and structural properties
– 03.65.Sq Semiclassical theories and applications – 05.30.Jp Boson systems

The phenomenon of Bose-Einstein condensation (BEC)
is a phase transition. Below the critical temperature Tc,
the ground-state population, which is the order param-
eter, becomes macroscopic. This phenomenon, that hap-
pens strictly speaking only at the thermodynamic limit, is
usually illustrated in textbooks with a homogeneous gas.
Experimentally, the Bose-Einstein condensation of dilute
gases has been observed since 1995 with atoms confined
in a harmonic trap [1]. These stimulating experimental
data have quickly pointed out that two effects had to be
taken into account: the interatomic interactions and the
finite number of atoms [2]. Several papers, as the present
one, have studied harmonically trapped ideal gases con-
taining a finite number of atoms. Two quantities have
been investigated in detail: the atom number [3,4,6–9]
and the specific heat [5,7,9]. For a finite but large (typi-
cally 106) number of atoms, the properties of the atomic
cloud change abruptly at a characteristic temperature we
will name the transition temperature T ∗. This tempera-
ture is shifted compared to Tc, but by a small amount,
typically of few percent for atom numbers around 106.
There is also a characteristic temperature for the specific
heat; it is different from the previous one but still close to
Tc [5,9].

Surprisingly, less attention has been paid on the atomic
density of an ideal gas [10]. In a homogeneous gas it
is obviously equivalent to the atom number but this is
no more the case in a spatially varying potential. It be-
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comes the good parameter of the theory, in particular
to perform local density approximations. This quantity
is then particularly important for the study of the shift of
the critical temperature by the interatomic interactions,
both within the mean-field approximation [6] and beyond
this approximation [11]. We will show, in the case of an
isotropic harmonic trapping and for a finite atom num-
ber, that the ground-state density at the centre of the
trap increases much more sharply than its population as
the temperature decreases. This leads to the fact that near
the Bose-Einstein transition temperature the density is al-
ready dominated by the ground-state contribution. This
holds whatever the atom number is, and is a remanence of
the infinite compressibility of an ideal gas at the thermo-
dynamic limit [12]. Usual semi-classical approximations
do not take into account the ground-state contribution
and then fail in the vicinity of the Bose-Einstein transi-
tion temperature. This is not a finite size effect in the
sense that it is not related to the discretization of the ex-
cited states energy levels. We will compare the exact re-
sults with semi-classical approximations. The addition of
the ground-state contribution on the latter ones improves
their accuracy. We will finally show that the influence of
the ground-state is smaller if the measured quantity is the
density integrated over at least one dimension. It is still
large for typical experimental parameters.

We will perform our calculations in the grand canoni-
cal ensemble (GCE). Then, the Bose-Einstein distribution
gives the population Ni of a given energy level εi: Ni =

(eβ(εi−µ) − 1)−1 with
∞∑

i=0

Ni = N . Here β = 1/kBT with
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kB the Boltzmann’s constant, µ the chemical potential and
N the total atom number. The equivalence between GCE
and the canonical or microcanonical ensemble, these latter
being probably more appropriate descriptions, is generally
not guaranteed, especially for systems that are not at the
thermodynamic limit. For instance, it is well-known that
the GCE predicts unphysical large fluctuations of the con-
densate population at low temperature [13]. However, the
authors of references [10,14,15] have shown that the oc-
cupation numbers Ni in GCE are very close to the ones in
the canonical ensemble. The difference is more pronounced
for small atom number and anisotropic clouds. As a result
and because GCE enables to give analytic expressions on
contrary to the other ensembles, we will use GCE in the
following.

For a fixed atom number, the chemical potential in-
creases as the temperature decreases. As µ has to be
smaller than ε0, the ground-state energy, the excited states
population will saturate when µ approaches ε0 whereas N0

is still increasing: N − N0 =
∞∑

i=1

Ni(µ, T ) ≤
∞∑

i=1

Ni(ε0, T ).

As in references [2,16], we will define the transition tem-
perature T ∗ as the temperature for which the excited
states saturated population is equal to the total atom
number:

∞∑

i=1

Ni(ε0, T ∗) = N. (1)

As pointed out in the introduction, there is not a unique
definition of the transition temperature for a finite atom
number. Other definitions use, for instance, a change in
the slope for the condensate fraction in function of temper-
ature (more explicitly d3(N0/N)/dT 3 = 0) [17], a change
in the power dependence on the condensate fraction in
function of the atom number [9], which are also perti-
nent. We have checked that these various definitions af-
fect marginally the value of T ∗ and do not modify our
conclusions [18]. In the following we will then use equa-
tion (1) to define T ∗. Note that the chemical potential µ∗
at the transition temperature is close but not equal to the
ground-state energy; it is determined by the constraint

∞∑

i=0

Ni(µ∗, T ∗) = N. (2)

There are only a few examples of trapping potentials
where the eigen-energies and the eigen-functions are
known exactly. Semi-classical approximations give usually
accurate enough results and are suited to include inter-
atomic interactions, at least perturbatively. We will de-
rive various type of semi-classical approximations in the
following and test their accuracy because the harmonic
potential is an exactly solvable potential.

We will first examine the situation where �ω � kBT
with ω the oscillation frequency of the isotropic harmonic
trap. This corresponds to the large atom number limit
and semi-classical approximations should work. Replac-
ing the discrete energy spectrum by a continuous one
and neglecting the ground-state energy ε0, the density is
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Fig. 1. Ground-state population fraction in function of the
temperature in �ω/kB unit for a cloud of 103 atoms. The dot-
ted curve corresponds to the exact result given by model ex.
The solid, dot-dashed and dashed lines correspond respectively
to the semi-classical models sc, sc0 and sc∞. The last two ne-
glect the ground-state contribution above their corresponding
transition temperature and the first two take into account finite
size effects. The model sc is the closest to ex near Bose-Einstein
transition.

ρ(r) = 1
λ3 g 3

2
[z exp(− τ

2 (r/σ)2] with z = eβµ the fugac-
ity, τ = �ω/kBT and g 3

2
( ) a Bose function [19]. With

the above notation, the thermal de Broglie wavelength is
λ = σ

√
2πτ and the size of the cloud is

√
kBT/mω2 =

σ/
√

τ . Similarly, the atom number is N = g3(z)/τ3.
Equation (1) leads then to N = ζ(3)/τ∗3, with τ∗ the
value of τ at T = T ∗. The above expressions for the
density and atom number are in fact approximations for
the excited states and do not contain the ground-state
contribution. Then µ∗ defined by equation (2) is equal
to 0 and z∗ = 1. The transition temperature defined
here corresponds to the critical temperature Tc. The peak
density at the transition temperature is then given by
ρ(0)λ3 = g 3

2
(z∗) = ζ(3/2) ≈ 2.612. For temperatures be-

low Tc, the excited states population is given by ζ(3)/τ3.
Then, the ground-state population fraction is N0/N = 0
for T > Tc and N0/N = 1 − (T/Tc)3 for T < Tc. This
fraction will be plotted in Figure 1, labelled with sc∞.

These approximations are too crude and give in-
accurate results for the atomic density, however. The
reason is that the ground-state contribution cannot be
neglected. A better expression is ρ(r) =
1
λ3 g 3

2
[ze−

τ
2 (r/σ)2 ] + ρ0(r) and similarly N = 1

τ3 g3(z) + N0

with ρ0(r) = [N0/(
√

πσ)3]e−(r/σ)2 and N0 = z/(1 − z).
The value of T ∗ is unchanged as it is defined by
the excited states saturation, but z∗ is now different
from 1. Using g3(z∗) ≈ ζ(3) − ζ(2)x∗ with z∗ = e−x∗

(x = β(ε0 − µ) > 0), one finds using equation (2)
that x∗ ≈ τ∗3/2/

√
ζ(2) [9]. The ground-state popula-

tion is ∼1/x∗ and, as expected, is vanishingly small
as τ∗ → 0 compared to the excited-state population
ζ(3)/τ∗3. The ground-state peak density is ∼1/(

√
πσ)3x∗

whereas the excited state peak density is ζ(3/2)/λ∗3. As
λ∗ = σ

√
2πτ∗, the two quantities have the same order of

magnitude! The above high-N analysis predicts then that
the degeneracy parameter at the transition temperature
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is ρ(0)λ3 = ζ(3/2) + 2
√

2ζ(2) ≈ 6.24 and not 2.612. The
ground-state population is extremely small but the size of
its wave-function is also extremely small compared to the
atomic cloud size. For a harmonic trap both depend on
the same small parameter, raised to the same power. So,
even for very large atom number, the traditional criterion
for BEC should be modified. This effect is linked to the
pathological behaviour of the ground-state density at the
thermodynamic limit, i.e. the infinite compressibility of
an ideal gas [12]. This limit means N → ∞ with Nω3 →
constant. The ground-state size being σ =

√
�/mω, the

density of that state behaves as
√

N below threshold and
is then infinite at the thermodynamic limit whereas the
density above Tc is finite.

We will now address the case of atom numbers in the
accessible experimental range, 103–106. It is well-known
that the transition temperature will be shifted compared
to Tc [3,4,7]. A better approximation, which takes into
account the ground-state energy to first order, is ρ(r) =
1
λ3 {g 3

2
[z̃(r)] + 3τ

2 g 1
2
[z̃(r)]} where z̃(r) = ze−

τ
2 (r/σ)2 . Then

N = 1
τ3 [g3(z) + 3τ

2 g2(z)]. The corresponding transition
temperature is T ∗

sc such that N = 1
τ∗3

sc
[ζ(3) + 3

2ζ(2)τ∗
sc].

This is the usual semi-classical approximation found in the
literature. The ground-state population fraction is then
N0/N = 0 for T > T ∗

sc and

N0/N = 1 −
(

T

T ∗
sc

)3 ζ(3) +
3τ

2
ζ(2)

ζ(3) +
3τ∗

sc

2
ζ(2)

for T < T ∗
sc. This fraction, also plotted in Figure 1, will be

labelled with sc0. Note that g 1
2
(z) diverges at z = 1 [20],

meaning that this approximation is intrinsically inaccu-
rate near the centre of the trap and near the transition
temperature. This divergence is however weak, and any
spatial integration would give a finite result. We can still
cure this pathology by adding, as before, the ground-state
contribution. We obtain then
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρsc(r) =
1
λ3

{g 3
2
[z̃(r)] +

3τ

2
g 1

2
[z̃(r)]} +

z

1 − z

e−( r
σ )2

(
√

πσ)3

N =
1
τ3

[g3(z) +
3
2
τg2(z)] +

z

1 − z

T ∗
sc such that N =

1
τ∗3
sc

[ζ(3) +
3
2
ζ(2)τ∗

sc]

.

(3)
This semi-classical approximation will be labelled with sc
in the following. The comparison of T ∗

sc with the value
given by the exact model (see below) can be used to check
the finite size correction. Even so, this comparison is use-
less to check the contribution coming from the ground
state since it does not depend on it (same transition tem-
perature as sc0).

We can now test these semi-classical approximations
for a harmonically trapped gas. As we referred before,
for this case, the eigen-energies and the eigen-functions
are known exactly. The corresponding expressions of the
atomic density and atom number [13], labelled with ex in
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Fig. 2. Relative shift of the semi-classical transition temper-
atures Tc (dashed line) and T ∗

sc (dotted line) to T ∗
ex (see text)

in function of the atom number. Both temperatures converge
for high atom numbers. The critical temperature at thermody-
namic limit, Tc, deviates by less than 1% for N > 5×105. The
semi-classical transition temperature defined for a finite atom
number, T ∗

sc, is much more accurate and deviates by less than
1% for N > 400.

the following, are:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρex(r) =
1

(
√

πσ)3
∞∑

l=1

zl

(1 − e−2τl)3/2
e− tanh( τl

2 )( r
σ )2

N =
∞∑

l=1

zl

(1 − e−τl)3

T ∗
ex such that N =

∞∑

l=1

(
1

(1 − e−τ∗
exl)3

− 1
)

where, here z = eβ(µ−ε0). The semi-classical model corre-
sponds to a Taylor expansion in τ of these last expressions.

In Figure 1 we plot the ground-state population frac-
tion in function of the temperature for the various models
described above. When the number of atoms is only 103,
finite size effects are large. The prediction of model sc∞
is clearly wrong compared to the exact model prediction.
On contrary models sc0 and sc give a result close to the
one of ex [21]. Figure 2 shows the relative deviations of
Tc and T ∗

sc from T ∗
ex in function of the atom number. As

expected the different values are similar but, as above, the
model sc give a closer result to ex than sc∞. The value T ∗

sc
deviates less than 1% for N > 400 and the relative shift
is ∼10−4 for typical experimental atom numbers. This is
well below actual experimental uncertainties. The ther-
modynamic value Tc deviates more, typically 1% but is
still close to T ∗

ex [3,4,7,9]. The discrepancy with Tc would
have been more pronounced for an anisotropic trap (see
below).

This two figures illustrate what is called finite size ef-
fects, the fact that the energy level spacing is not negligible
compared to the temperature. What we are interested in is
the role of the ground-state. For this, the transition tem-
perature and the condensate population fraction are not
the best observables. It is nevertheless already clear from
Figure 1 that sc is a significant improved model to describe
semi-classically a cloud near degeneracy compared to sc0.
The high-N model predicts that the ground-state influ-
ence should be much more pronounced on the peak den-
sity. We will now focus our attention on that observable,
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Fig. 3. Degeneracy parameter ρ(0)λ3 in function of the atom
number N for clouds at the transition temperature. The dot-
ted line corresponds to the semi-classical model sc at T = T ∗

sc

and the solid line to model ex at T = T ∗
ex. Even if the degener-

acy parameters are somewhat different, they both differ signifi-
cantly to the usual value of 2.612 (dashed horizontal line). This
deviation is due to an under-estimation of the ground-state
density. The actual values are close to our high-N prediction
of 6.24 (see text).
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Fig. 4. Condensate atom number fraction N0/N (dashed line)
and peak density fraction ρ0(0)/ρ(0) (solid line) in function
of the temperature in harmonic oscillator unit �ω/kB, using
model ex. The cloud contains 106 atoms. The transition tem-
perature is T ∗

ex = 93.37�ω/kB and the asymptotic thermo-
dynamic temperature is Tc = 94.05�ω/kB . The positions of
these temperatures are shown as vertical lines in the figure.
The ground-state peak density increases much more sharply
than the ground-state population around the transition tem-
perature. The former has also a significant value above T ∗

ex.
The model sc is indistinguishable for N0/N , but is slightly
different for ρ0(0)/ρ(0) (dotted line).

only in the more pertinent comparison between the models
sc and ex.

This is first illustrated in Figure 3 where the degener-
acy parameter ρ(0)λ3 is plotted in function of the atom
number for clouds at T = T ∗. We plot this number for the
semi-classical approximation sc and for the exact model,
ex. The two curves are higher than 2.612. This highlights
the inaccuracy of the standard semi-classical models (sc0

or sc∞) that do not take into account the ground-state
contribution. It confirms also the calculation developed
above. The degeneracy parameter is astonishingly con-
stant till 103 atoms and does not differ much even for
smaller atom numbers. Models sc and ex, which have
almost the same transition temperature, have the same
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Fig. 5. Same as in Figure 4 but with 103 atoms. The transition
temperature is T ∗

ex = 8.71�ω/kB and the asymptotic thermo-
dynamic temperature is Tc = 9.41�ω/kB . Since the number of
populated states is considerably reduced compared to Figure 4,
the discrepancy between sc (dotted lines) and ex is more pro-
nounced. This also explains why the increase of the condensate
peak density is slower.
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Fig. 6. Atomic density ρex in function of r/σ where σ is the
size of the harmonic oscillator ground-state. The temperature
is T = 93.37�ω/kB and the atom number N spans from 0.990×
106 to 1.004×106 by step of 2000 atoms. The curve at threshold
is in dotted line and corresponds to 106 atoms. The inset shows
the excited states and ground state density profile at threshold.
The dip around r = 0 is mainly due to the first excited state
population.

asymptotic value of the degeneracy parameter. This value,
6.24, is the one predicted by our high-N analysis. The
model sc is significantly higher than this value for exper-
imentally accessible atom numbers. This is because our
first analysis does not take into account the 3

2τ term of
model sc. To first order [19],

x∗
sc ≈ (τ∗

sc)
3
2

√
ζ(2)

(

1 +
9

8ζ(2)
τ∗
sc ln τ∗

sc

)

and is then slightly smaller than (τ∗
sc)3/2/

√
ζ(2). Conse-

quently the ground-state peak density is bigger at T ∗
sc us-

ing model sc than at Tc using the high-N model. The
excited states peak density is also higher in model sc be-
cause of this 3

2τg 1
2

term.
The next three figures deal with the cloud properties

around the Bose-Einstein threshold. Figures 4 and 5 show
the evolution of the condensate fraction N0/N and the
condensate peak density fraction in function of T for two
different atom numbers, 106 and 103. Figure 6 shows the
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density profile of clouds near degeneracy. What prevails
in Figure 4 is the sharp increase of the condensate peak
density compared to the condensate population. Moreover
the models sc and ex give very close results validating our
analysis on the ground-state contribution near degener-
acy. This means that the peak density is a much better
marker of the Bose-Einstein threshold than the atom num-
ber. This feature is in fact used experimentally: the ap-
pearance of a small peak over a broad distribution is the
usual criterion to distinguish clouds above or below the
transition temperature. This sharpness also explains why
the value of the peak density is very sensitive to the value
of the temperature (cf. Fig. 3). Figure 4 shows also that,
above threshold, the ground-state peak density fraction
decays slowly. This is even more pronounced in Figure 5
where N = 103 instead of 106. It comes from the fact that
the number of populated states is not macroscopic any-
more (kBT < 10�ω) and then the transition is smoother
for smaller atom number. Once again, the density is a
better marker of degeneracy than the atom number. This
figure shows also that the 3

2τ term and the ground-state
contribution make the model sc still very close to model
ex, respecting the density and population fractions, even
for 103 atoms.

The above analysis is focused on the peak density i. e.
at the centre of the cloud. Figure 6 shows the total density
profile of clouds, all at the same temperature, but contain-
ing different numbers of atoms around N∗

ex, the number
of atoms for which T = T ∗

ex (N = N∗
ex corresponds to the

dotted line). This figure simulates somehow an experimen-
tal observation of BEC threshold. Only the central part
is sensitive to the atom number; this corresponds to the
condensate growing as the number of atoms is increased
and to the fact that the excited states are already satu-
rated for these atom numbers. Moreover, by looking at the
graph, one would rather think that the Bose-Einstein tran-
sition occurs for a smaller atom number. This points out
that the definition on the transition temperature based
on an atom number criterion does not fully correspond
to the one based on the atomic density which would be
more connected to experiments. The inset shows the ex-
cited states and ground state density profiles at threshold.
The excited states density exhibits a dip in the centre of
the cloud, obviously not present in semi-classical models
(monotonic functions). We check that the height of the
dip is proportional to 1/τ and can almost be totally at-
tributed to the first excited state population. The aim of
this paper is to show the importance of the ground-state
in the study of non-interacting clouds close to threshold.
The inset reveals that the first excited state density is also
largely under-estimated; it represents ∼10% of the peak
density whereas it contributes only to ∼0.1% of the pop-
ulation.

We have shown results on the atomic density at the
vicinity of the transition temperature. Detection tech-
niques consist rather on 1D-integrated density, corre-
sponding to 2D absorption images, or 2D-integrated den-
sity [23]. One can show that, at threshold, the 1D and
2D-integrated peak density of the ground-state are van-
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Fig. 7. Contribution of the ground-state on the peak density
for, from bottom to top, 1D, 2D and 3D images in function
of the number of trapped atoms. The clouds are at the tran-
sition temperature T ∗

ex and the calculations use model ex. A
3D image would give the density in all three dimensions of
space [25] whereas a 2D (resp. 1D) image corresponds to the
density integrated over one (resp. 2) dimension. For N = 104

atoms the ground-state contributes to ∼26% in 2D images and
∼6% in 1D images. In contrast to 3D image, the ground-state
contribution is very small for large atom number; it is not for
typical atom numbers accessible in experiments.

ishingly small for large atom numbers on contrary to the
non-integrated case. The peak 1D-integrated density frac-
tion behaves at threshold as

√
τ and the 2D-integrated

peak density as τ . For typical atom number this is never-
theless not negligible. This is illustrated in Figure 7 where
is plotted the condensate peak density fraction for 3D,
2D and 1D images of clouds at threshold. The calcula-
tions use the model ex. At the transition temperature
T ∗

ex, the ground-state contributes to more than 10% for
N < 2500 atoms in 1D images and for N < 8× 106 atoms
for 2D images. It means that, even with the conventional
technique of absorption images, the effect should be ex-
perimentally observable if interactions could be switched
off using, for instance, the magnetic tunability of the scat-
tering length close to a Feshbach resonance [24].

Apart from the atomic density, two- and three-body
inelastic loss rates will also be affected and could be 20
to 30% higher than predicted by model sc0 around the
transition temperature for typical atom numbers. Finally,
in most experimental set-ups, the trapping potential is
anisotropic and finite size effects are then stronger. Indeed
the term 3

2τ in equation (3) should be replaced by 3
2

ω̃
ω̄ τ ,

with ω̄ = (
∏

i

ωi)1/3 the geometric mean and ω̃ = 1
3

∑

i

ωi

the arithmetic mean [3]. Whatever the anisotropy is, ω̃
is always larger than ω, making the finite size contri-
bution stronger. To first order and if kBT ∗

ex � �ωi for
i = x, y and z, the ground-state contribution should be
the same since our high-N analysis does not depend on
any anisotropy.

In conclusion, we have shown that the density of an
ideal atomic gas is dominated by the ground-state contri-
bution near the transition temperature. The inter-atomic
interactions have been neglected in our analysis and will
modify our conclusions. With repulsive interactions, the
clouds tends to decrease its density at the centre of the
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cloud whereas it tends to increase it with attractive in-
teractions. Previous calculations have treated separately
finite size and interactions effects, both corrections be-
ing finally added [6]. Since the ground-state has a non-
perturbative effect on the density, our analysis tends to
prove that both effects have to be investigated together.
The approach of reference [10] could in this respect pro-
vide helpful informations. Feshbach resonances, which en-
able to tune the interactions strength, constitute a power-
ful tool to check the accuracy of the different theoretical
models. Moreover, a full three-dimensional density mea-
surement would also be valuable; this type of measure-
ment is at the edge to be available in our experiment on
metastable helium in Orsay [25].

We thank S. Giorgini for stimulating discussions. The Atom
Optics group of LCFIO is member of the Institut Francilien de
Recherche sur les Atomes Froids (IFRAF).
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